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Summary 

A novel algorithm for removing baseline distortions in NMR spectra is presented. The algorithm ap- 
proximates the baseline as the median of the noise extrema. Consequently, the method does not require 
that NMR peaks be discriminated from noise peaks. In addition, no assumptions regarding the source 
or functional form of the distortion are made. The algorithm is shown to remove the baseline artifacts 
present in a particularly distorted NOESY spectrum and to reveal peaks which had been obscured by 
the artifacts. The parameters and spectral characteristics (signal-to-noise ratio, NMR peak density, peak 
linewidths) governing the resolution of the calculated baselines are also explored. 

Introduction 

Baseline distortions often interfere with the interpre- 
tation and quantification of NMR data: weak cross peaks 
may be obscured, and the measurement and calibration 
of cross-peak volumes can be problematic. In addition, 
the design of robust automated peak-picking algorithms 
becomes much more difficult in the presence of baseline 
artifacts with arbitrary magnitudes and shapes. 

Numerous approaches have been developed to correct 
baseline defects during post-acquisition processing. In 
some cases the source of the distortions is known, and the 
artifacts can be avoided or removed during processing. 
For example, the delayed acquisition of FIDs can lead to 
errors in the first few datapoints, which in turn introduces 
baseline roll in the frequency domain. This distortion can 
be avoided by using backward linear prediction to esti- 
mate the first few datapoints (Otting et al., 1986; Marion 
and Bax, 1989). Often, however, the sources of the arti- 
facts are unknown, and the shapes of the distortions are 
unpredictable. For these cases, the canonical approach to 
removing the artifacts is to fit a predefined functional 
form to a subset of points which lie on or near the base- 
line. Estimates of the baseline values for the remaining 
points are then obtained by interpolation and extrapola- 
tion. The approximating function serves as a model of the 
distorted baseline and, when subtracted from the spec- 
trum, yields a flattened baseline. 

For the strategy outlined above to be successful, the 
points to be fit must be reliably identified as baseline 
points and not NMR signals. From an algorithmic 
standpoint, the simplest method for discriminating 
between the two types of points is to have the user desig- 
nate a set of known baseline points (Barsukov and Arse- 
niev, 1987; Zolnai et al., 1989). While straightforward, 
this method has the important disadvantage that the 
selected points are necessarily outside the spectral regions 
of interest. As a consequence, the interpolated baseline 
values are often inaccurate, and the distortions lying in 
these important areas may be only incompletely removed 
or even made worse. Automated techniques have been 
developed to discriminate between the baseline and peak 
points (Pearson, 1977; Dietrich et al., 1991; Giintert and 
Wtithrich, 1992; Rouh et al., 1993). However, this is an 
inherently difficult task, given the wide range of possible 
baseline distortions and peak shapes. While these methods 
typically work well, examples where the results are unac- 
ceptable are readily found. 

Once the baseline points have been identified, they are 
fit to a predefined functional form. Commonly used func- 
tions include cubic splines (Zolnai et al., 1989; Roub et 
al., 1993), sectionally linear functions (Saffrich et al., 
1993), polynomials (Dietrich and Gerhards, 1981; Dau- 
benfeld et al., 1985; Dietrich et al., 1991) and sums of 
orthogonal polynomials (Pearson, 1977; Henrichs et al., 
1986; Barsukov and Arseniev, 1987; Giintert and 
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Wtithrich, 1992; Rouh et al., 1993). A major drawback to 
using a fixed function or set of basis functions is that the 
distortions can vary arbitrarily from spectrum to spec- 
trum and for multidimensional spectra from row to row; 
this makes the selection of an optimal basis set of func- 
tions difficult. If the number of basis functions used in 
the fit is too small, the range of distortions which can be 
modeled will be limited. As a result, the fit to the selected 
baseline points may be poor and the interpolation of the 
remaining points even poorer. On the other hand, the use 
of a large number of basis functions will yield an accurate 
fit, but may also introduce spurious baseline structure in 
regions containing only a small number of fitted points. 

In this report, a novel approach for removing baseline 
distortions is presented. The algorithm does not require 
the discrimination of NMR peaks from noise extrema. 
Moreover, no assumptions are made regarding the source 
or functional form of the distortion. Thus, the algorithm 
presented here is 'model-free'. An overview of the method 
is given, followed by a discussion of its implementation 
and the critical issues governing its utility and limitations. 

Method 

The algorithm circumvents the problem of distinguish- 
ing between NMR and noise peaks by exploiting the ubi- 
quity of noise in experimental spectra. For a spectrum of 
only noise, the baseline can be defined by the criterion that 
the area above the line is equal to the area below it, i.e., 
the average value of the spectrum. This is obviously not 
a viable technique in the presence of NMR resonances, 
since the area under these peaks would usually dominate 
the area under the noise peaks. Instead, as a proxy meas- 
ure for the area, the number of local maxima and minima 
is used. Hence, the baseline is defined here by the crite- 
rion that the number of local extrema above the line 
equals the number of local extrema below the line. Em- 
ploying this measure, an NMR peak is just another local 
maximum or minimum, and therefore the classification of 
peaks into noise or NMR resonances is unnecessary. 
From a statistical perspective, the baseline is approxi- 
mated by the median of the noise peak heights instead of 
the average area. This approximation is valid provided 
the density of NMR peaks is small relative to the density 
of noise peaks; this point is discussed further below. 

The drawback of forcing the calculated baseline to 
follow a user-specified form under the standard approach 
is eliminated here by using a free-form method. The local 
baseline structure is tracked by finding the median of the 
extrema within a small region or window centered about 
each point in the spectrum. An extremum is taken to be 
a point i such that the intensity at i, I(i), is either strictly 
greater or less than both I(i - 1) and I(i + 1). The 
approach is illustrated in Fig. 1: the window size, W, is 
34 points and each window has typically 18-24 extrema; 
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Fig. 1. An expanded region of noise from the middle of a 1D spec- 
trum. The medians are calculated from the extrema which fall within 
17 points of  each point (W = 34). For example, 24 extrema fall within 
the topmost window for point 264. The median values are represented 
by the dots, and  the solid interpolating line is the final result after the 
convolution of the median values with the Gaussian function. 

the median values are represented by the solid dots. The 
array of median values provides a preliminary model for 
the distorted baseline. Since no assumptions regarding the 
functional form of the artifact are made, the shape of the 
distortion that can be handled is arbitrary. 

The windows employed for points within W/2 points of 
the spectrum boundaries must be modified to take into 
account the ends of the spectrum. If I(1) = I(N), where N 
is the number of points in the spectrum, then the win- 
dows are wrapped across the spectrum boundaries and 
will include points from both ends of the spectrum. For 
example, the window associated with point N would com- 
prise the first and last W/2 points. The continuity condi- 
tion, I(1) = I(N), will in general be satisfied for spectra in 
which the linear phase correction is a multiple of 360 ~ 

For spectra in which the continuity condition is not 
satisfied, for example due to an inability to phase the 
spectrum properly or a pathological distortion, the win- 
dows for points within W/2 points of the spectrum boun- 
daries are not wrapped. Instead the windows for these 
points only include either the first or last W points. For 
instance, the window associated with point 1 would span 
points 1 through W, and the window associated with 
point N would span points N - W + 1 to N. As a result, 
the windows for the boundary points are not centered at 
the point for which the median is being calculated. In 
addition, the baseline estimates for the first and last W/2 
points are constant. A discussion of how the program 
determines if the spectrum is continuous across the 
boundaries is given in the Appendix. 

A Gaussian function is convoluted with the median 
values to smooth any sharp discontinuities. The final esti- 
mated baseline value at point i, B(i), is given by: 

i + (W/2) 

B(i) = • M(j) G ( i - j )  
j=i-(W/2) + 1 
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where M(j) is the median value associated with point j. 
The Gaussian function, G(k), is centered about zero and 
normalized such that 

(WI2) - 1 

a ( k )  = 1 
k =-(W/2) 

By decreasing the standard deviation of the Gaussian, 5, 
from 8 >> W to 8 << 1, the weighting of the median values 
can be adjusted from a uniform to a delta-function 
weighting. In Fig. 1 the convoluted result is represented 
by the solid line interpolating between the dots. This 
smoothing operation is not essential in most cases - the 
difference between using smoothed and unsmoothed base- 
lines is usually barely discernable to the user on the scale 
of the N M R  resonances. The convoluted result is then 
subtracted from the original spectrum to produce a flat- 
tened baseline. 

The calculation outlined here is similar in several 
respects to the low-frequency deconvolution method in- 
troduced by Marion et al. (1989) to remove the zero- 
frequency component of an FID. In both cases estimates 
of the quantity to be calculated (zero-frequency compo- 
nent or baseline) are made over localized regions. These 
estimates are smoothed by convolution with a weighting 
function and then subtracted from the original FID or 
spectrum. Besides the very different problems being 
addressed, the main difference between the two calcula- 
tions is that in the low-frequency deconvolution method 
an average instead of the median is computed. 

The critical parameter governing the success of the 
outlined method is the size of the window, W, used in 
calculating the median. W must be large enough so that 
the number of local extrema arising from the noise domi- 
nates the median statistic. For a given window, if the 
number of  N M R  peaks is comparable to the number of 
noise peaks, then the calculated baseline will be biased 
upwards for positive N M R  peaks; this bias will lead to a 
reduction in the intensities and volumes of the N M R  
peaks when the calculated baseline is subtracted from the 
spectrum. On the other hand, the resolution to which the 
artifacts can be monitored is inversely proportional to the 
window size. If  W is too large, the median estimates will 
be influenced by distant points and will not accurately 
reflect the local baseline structure. Thus far, simulta- 
neously satisfying these two constraints has been readily 
achieved for all applications of  the algorithm in our lab- 
oratory. For example, window sizes of 50-80 points have 
been empirically found to be good compromises for pro- 
ton spectra with digital resolutions of approximately 8 
Hz/point. With these window sizes, the number of local 
extrema is between 20 and 50. Consequently, only in very 
crowded regions of the spectrum will the density of N M R  
peaks be high enough to noticeably skew the baseline. 
These considerations imply that the best results will be 

obtained when the N M R  peak dispersion is maximal; 
hence, the algorithm should be applied only after all 
spectral dimensions have been processed. 

The computation of the medians is the most time-con- 
suming step in the execution of the algorithm. The 
medians are calculated by sorting the intensities of the 
local extrema within each window. The median is the 
value of the midpoint of the ordered array if the number 
of local extrema in the window is odd. If  the number is 
even, the median is taken as the average value of the two 
middle points of  the sorted array. The CPU time required 
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Fig. 2. (A) A particularly distorted slice of a 2D gradient-enhanced, 
half-reversed filtered, 200 ms 1H,IH NOESY spectrum with sup- 
pression of ~3C- and ~hN-attached protons (Wittekind et al., 1994). The 
experiment was performed on a 1.2 mM sample of a 15-residue 
peptide complexed with the N-terminal SH3 domain of a Grb2 pro- 
tein. The original spectrum is shown with the calculated baselines 
using the method introduced here (solid line) and the method pro- 
posed by Dietrich et al. (1991) (dotted line). For the method set forth 
here, the window size was set to 70 points, and the standard deviation 
of the Gaussian smoothing function was set to 5.0 points. In the 
approach of Dietrich et al. the size of the moving average filter was 
4, the default value. (B) The final, baseline-corrected spectrum after 
the application of the method introduced here. 
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using this approach is reduced by a factor of approxi- 
mately two by taking advantage of the fact that the 
sorted arrays for two adjacent points differ by at most 
two extrema, as seen in Fig. 1. Hence, the ordered array 
for the window centered at point i+ 1 can be obtained 
from the ordered array for point i in two steps. First, the 
point located at the trailing window edge, i -W/2 ,  is 
deleted from the array if it is an extremm~a. Likewise, if 
the point at the leading window edge, i + 1 + W/2, is an 
extremum, it is inserted so that the array remains sorted. 

For multidimensional spectra, the algorithm is cur- 
rently applied to 1D slices along each dimension. How- 
ever, it can be generalized in an obvious fashion to two 
or more dimensions. For two dimensions, the median 
would be calculated using rectangular windows of extre- 
ma centered about each point; in three or four dimen- 
sions, the windows would be cubes or hypercubes cen- 
tered about the points. The aspect ratio of the rectangles 
could be set equal to the ratio of the number of points in 
each dimension. The main benefit from generalizing the 
algorithm in this way should be an increase in the resol- 
ution of the model baseline. For higher dimensional spec- 
tra, the density of NMR peaks relative to noise extrema 
decreases, thereby allowing the window size to be re- 
duced. The ability to use a reduced window size may be 
important, for example, in crowded 2D ~H,~H NOESY 
spectra. Also, this generalization would allow dimensions 
with relatively low digital resolution to be included in the 
baseline correction. Multidimensional windows have not 
been implemented here, since the in-house, parallelized 
version of FELIX 1.0 (Hare Research, Bothetl, WA) in 
which the algorithm has been incorporated is currently 
only designed for 1D processing. To date, no real applica- 
tions have been encountered in which the density of peaks 

has been high enough to justify the extra programming 
effort. 

Results 

The algorithm is not a major bottleneck in the pro- 
cessing of spectra. For a 2D spectrum of 1024 x 1024 
points, the algorithm required 30 CPU seconds for both 
dimensions on a Silicon Graphics 4D440 workstation 
(four 40 MHz processors), and approximately 2000 CPU 
seconds for the two proton dimensions (F1 and F3) of a 
3D spectrum of 512 x 128 x 512 points. In both cases, the 
window size was set to 70 points. 

Figure 2A shows the baseline estimates obtained from 
the algorithm introduced here (solid line) and the 
algorithm proposed by Dietrich et al. (1991) (dashed line) 
for a particularly distorted vector from a 2D gradient- 
enhanced, half-reversed filtered ~H,~H NOESY spectrum. 
The baseline obtained by the method of Dietrich et al. 
does not follow the large dip and hump in the spectrum 
and would not yield a flattened baseline. The baseline 
calculated by the algorithm introduced here, on the other 
hand, tracks the distortions extremely well. The shapes 
and areas of the peaks are close to their initial values, as 
seen for eXample in the two small peaks located at the 
top of the hump (around 1.8 ppm). The only region of 
the baseline which is not accurately tracked is the bottom 
of the major dip near the center of the spectrum. Here, 
the rapidly sloping sides bias the estimate slightly up- 
ward~ Nevertheless, the resulting error in the baseline for 
this region is within the noise level and is certainly small 
enough for most purposes. The final, baseline-corrected 
spectrum using the approach presented here is shown in 
Fig. 2B. 
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Fig. 3. A region of the same 2D spectrum as described in Fig. 2. (A) and (B) show the region before and after the application of the algorithm. 
The window size used was 70 points, and the standard deviation of the Gaussian smoothing function was set to 5.0 points. The arrows in (B) point 
to cross peaks that were obscured by an artifact prior to the application of the algorithm. 
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Fig. 4. The t~ = 0 slice from a 2D ~H,]SN HSQC spectrum which has 
only been processed in tz. The top graph is the original spectrum, the 
middle graph is the result obtained from the application of the algo- 
rithm with a window size of 70 points and the bottom graph is the 
result obtained with a window size of 160 points. The standard devi- 
ations of the Gaussian smoothing function were set to 5.0 and 11.43 
points for the applications with window sizes of 70 and 160, respect- 
ively. 

Figure 3 shows a region of the same 2D spectrum 
before and after the application of the algorithm to both 
dimensions. The baseline-corrected spectrum is much 
cleaner, with all of the streaks either removed or greatly 
reduced in intensity. Importantly, peaks obscured by 
streaks in the original spectrum become visible after the 
application of the algorithm. For instance, the peaks at 
(3.87,4.31) and (3.54,4.31) ppm (indicated by the arrows 
near the bot tom left-hand corner of Fig. 3B) are hidden 
before the application of the algorithm, but are evident 
after the artifact is removed. 

To date the algorithm has been applied to a variety of 
spectra in our laboratory and in all cases it has removed 
or greatly attenuated the baseline artifacts without intro- 
ducing any noticeable distortions. To explore the limita- 
tions of  the approach proposed thus far, two artificial 
cases are examined; both examples are atypical and would 
not arise on a regular basis in the work of a protein 
N M R  spectroscopist. An enhancement to the algorithm 
is then presented which can better treat these cases, albeit 
with an increase in the computational requirements. 

In the upper inset of Fig. 4, the t I = 0 slice from a 2D 
1H,15N HSQC spectrum which has been processed along 
t2, but not tl, is shown. Normally, the algorithm would 
only be applied after the tl dimension had also been 
transformed. The closely spaced peaks in the amide 
region, however, test the ability of  the algorithm to 
handle spectra with a high density of  N M R  resonances. 
As seen in the middle inset of Fig. 4, if the window size 
is 70 points, then the baseline is distorted by the 
algorithm. For this window size, the extrema statistics are 

dominated by the N M R  peaks. However, if the window 
size is increased to 160 points then the baseline is not 
deformed, as illustrated in the bottom inset of  Fig. 4. For 
this window size, the noise extrema near the window's 
edges make a large enough contribution to the extrema 
statistics for the distortion introduced by the algorithm to 
be relatively small. The price paid for increasing the win- 
dow size is a reduction in the resolution to which the 
actual baseline is mapped. 

A second problematic but atypical case is illustrated in 
Fig. 5 for a synthetic spectrum containing a very broad 
peak (linewidth = 150 Hz in a spectrum with a spectral 
width of 3000 Hz). Here, the signal-to-noise ratio has 
been set low enough that the noise superimposed on the 
peak leads to a substantial number of local extrema on 
the peak itself. Because these extrema are included in the 
calculation of the median, the estimated baseline is biased 
upwards at the peak's base, as can be seen in Fig. 5. 
Consequently, the peak's intensity and volume are re- 
duced after the application of the algorithm. For this 
artificial example, Fig. 6A shows the magnitude of the 
distortions introduced by the algorithm as a function of 
the window size and signal-to-noise ratio. The abscissa in 
Fig. 6 gives the window size, while the ordinate represents 
the distortion introduced by the algorithm. The distortion 
is computed as the ratio of the maximum value of the 
calculated baseline to the peak height; ideally, this ratio 
should be zero. The three lines from top to bottom repre- 
sent the results for spectra with increasing signal-to-noise 
ratios. For spectra with high signal-to-noise ratios, fewer 
local extrema are present on the peak, and therefore the 
upward bias in the calculated baseline is smaller. From 
Fig. 6A, the distortion is unacceptable for window sizes 
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Fig. 5. A synthetic spectrum with a spectral width of 3000 Hz (1024 
points) and a signal-to-noise ratio of approximately 16. The linewidth 
of the large peak is 150 Hz. The smooth line underneath the peak is 
the baseline obtained from the application of the algorithm to the 
spectrum with a window size of 70 points. The standard deviation of 
the Gaussian smoothing function was set to 5.0 points. 
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Fig~ 6. (A) A plot of the variation of the distortion introduced by the algorithm as a function of the window size attd signal-to-noise ratio of the 
spectrum. The spectral and peak parameters were identical to those used in Fig. 5, The abscissa is the window size in points. The ordinate is the 
ratio of the maximum value of the calculated baseline to the peak height; it is a measure of the distortion introduced by the algorithm, From top 
to bottom, the signal-to-noise ratios are Ifi, 20 and 60. The slgnal-to-noise ratios were computed as: (peak heighff2*standard deviation of the first 
300 points). (B) is similar to (A), but wSth the window size automatically adjusted, as discussed in tim text. The abscissa here is the minimum 
window size used. For N1 lines, the standard deviation of the Gaussia~ smootNng function was set to 5.0 points. 

which are approximately equal to the linewidth at all 
signal-to-noise ratios. For higher signal-to-noise ratios 
(60), window sizes which are twice the linewidth are rea- 
sonable, while for lower signal-to-noise ratios (t0-20) 
window sizes which are at least two to three times larger 
than the linewidth of the peak are required. Of course for 
narrower and hence more realistic peaks, the distortions 
would be smaller for the same window sizes and signal- 
to-noise :ratios. 

The algorithm can be made more robust by allowing 
the window size to vary {br each point. In spectral 
regions with a high density of NMR peaks, the density of 
extrema is lower than elsewhere in the spectrum, due to 
the smoothing effect of the NMR peaks. Therefore, the 

program can identify problematic regions, such as those 
in Figs. 4 and 5, by their relatively low densities of extre- 
ma. By subsequently increasing the window size outside 
these areas, the extrema statistics are more likely to be 
dominated by the noise peaks, and hence the distortions 
introduced by the algorithm will be reduced. While the 
detailed implementation of this idea can take several 
forms, the following approach gave the best results. For 
a fixed, user-specified window size, the number of extre- 
ma, E(i), within the window of each point i is found; the 
maximum, X, of the E(i) over all points i within the ID 
slice is then determined. The actual window size used for 
each point is then set so that the nmnber of extrema 
encompassed by the window is equal to X. 
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The main advantage to using elastic window sizes is 
that the resolution to which the regions with ample noise 
extrema are modeled is maximized, while the magnitude 
of the distortion introduced in regions with poor noise ex- 
trema statistics is minimized. For example, the window 
size for the spectrum in Fig. 4 could be reduced from 160 
to 120 points; in this context, the '120 points' refers to the 
initial window size used to calculate the number of extre- 
ma to be enclosed by each window. For most points, the 
actual window sizes used were in the range 120-130 
points; only in the bank of peaks is the window size in- 
creased significantly - up to 174 points. Figure 6B plots 
the distortions produced when variable window sizes are 
used tbr the spectrum displayed in Fig. 5. When Figs. 6A 
and 6B are compared, it is evident that the distortions are 
reduced for the same window size. Finally, it should be 
noted that the results shown in Figs. 2 and 3 were essen- 
tially unchanged when the window sizes were allowed to 
vary. 

The drawback to using elastic window sizes is an in- 
crease in the computational time by a factor of approxi- 
mately three. Because the windows of points i and i + 1 
no longer have a simple relationship, the method discuss- 
ed above for finding the median is not used; instead, a 
full sort is performed for each window of extrema. In 
addition, the calculation of the window sizes adds to the 
CPU time. Currently, the default option is to have a fixed 
window size since it is faster and capable of handling 
most experimental data. 

Conclusions 

In summary., a novel approach for removing baseline 
artifacts has been described. The algorithm is fully auto- 
mated. It makes no assumptions about the shape or func- 
tional form of the distortions, and does not require that 

NMR peaks be distinguished from noise peaks. Instead, 
the algorithm exploits the omnipresence of noise extrema 
to trace the baseline. The only major requirement is that 
the density of NMR peaks be small relative to that of the 
noise peaks in the spectrum, a condition satisfied by the 
majority of multidimensional NMR experiments. The 
software is available from the author upon request. 
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Appendix 

The decision to wrap or not wrap the windows near 
the spectrum boundaries is based on whether the condi- 
tion I(1) -- I(N) is satisfied. To quantitate this condition, 
the medians M 1 and MN of the extrema within the first 
and last W points of the spectrum, respectively, are com- 
pared. A scale for the comparison is established by calcu- 
lating the standard deviations, (y~ and cy~, of a subset of 
the extrema within the two regions. A subset of the full 
set of extrema is used to exclude NMR peaks from the 
calculation of the 6s. If these peaks were included in the 
calculations, the standard deviations could be sharply 
increased. The subset is chosen as the first two quartiles 
of  the absolute values of the extrema contained within 
each window. For example, if there are L extrema, Ei, 
within the first W points, and they are sorted and labeled 

such t ha t  IEll -< tg21 - ... <- IELt, then  (y~ is the s t a n d a r d  
deviation of the set { IEll, IE21 . . . .  , I E J  }. By not includ- 
ing the third and last quartile, any NMR peaks in the 
two end regions should be excluded from the calculations. 
Once c h and c N are found, the minimum of the two is 
taken and set to G; the minimum is used since a single 
scale for the comparisons is required and by choosing the 
smaller of the two, the condition for continuity is made 
more stringent. Finally, if the following condition is sat- 
isfied: 

IM~ - MNI < 2 .0~  

the spectrum is taken to be continuous across the 
boundaries and the windows are wrapped. 


